[24’CIKM] Yang Xiao, Zijie Zhang, Yuchen Fang, Da Yan, Yang Zhou, Wei-Shinn Ku, Bo Hui, “Advancing Certified Robustness of Explanation via Gradient Quantization,” in 33rd ACM International Conference on
Information and Knowledge Management (CIKM, 2024)
[23’ICLR] Bo Hui, Da Yan, Xiaolong Ma, and Wei-Shinn Ku, “Rethinking Graph Lottery Tickets: Graph Sparsity Matters,” in the 11th International Conference on Learning Representations (ICLR, 2023).
[23’AAAI] Bo Hui, Yuchen Fang, Tian Xia, Sarp Aykent, and Wei-Shinn Ku, “Constrained Market Share
Maximization by Signal-guided Optimization,” in Proceedings of the 37th AAAI Conference on
Artificial Intelligence (AAAI, 2023).
[22’KDD] Bo Hui and Wei-Shinn Ku, “Low-rank Nonnegative Tensor Decomposition in Hyperbolic Space,” in Proceedings of the 28th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD, 2022).
[22’ICDE] Bo Hui, Da Yan, Haiquan Chen, and Wei-Shinn Ku, “Time-sensitive POI Recommendation by Tensor Completion with Side Information,” in Proceedings of the 38th IEEE International Conference on Data Engineering (ICDE, 2022).
[22’EMNLP] Bo Hui, Tian Xia, and Wei-Shinn Ku, “A Localized Geometric Method to Match Knowledge in Low-dimensional Hyperbolic Space,” in Conference on Empirical Methods in Natural Language Processing (EMNLP, 2022).
[21’KDD] Bo Hui, Da Yan, Haiquan Chen, and Wei-Shinn Ku, “TrajNet: A Trajectory-Based
Deep Learning Model for Traffic Prediction,” in Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD, 2021).
[21’ICDE] Bo Hui, Haiquan Chen, Da Yan, and Wei-Shinn Ku, “EDGE: Entity-Diffusion Gaussian
Ensemble for Interpretable Tweet Geolocation Prediction,” in Proceedings of the 37th IEEE International Conference on Data Engineering (ICDE, 2021).
[21’ICDM] Bo Hui, Da Yan, Haiquan Chen, and Wei-Shinn Ku, “Trajectory WaveNet: A Trajectory-Based Model for Traffic Forecasting,” in Proceedings of the 21st IEEE International Conference on Data Mining (ICDM, 2021).
[20’CIKM] Bo Hui, Da Yan, Wei-Shinn Ku, and Wenlu Wang, “Predicting Economic Growth by
Region Embedding: A Multigraph Convolutional Network Approach,” in Proceedings of the
29th ACM International Conference on Information and Knowledge Management (CIKM, 2020).